SITE SEARCH:
video overview
ADS

IIr Associates, Inc.
Publisher of The Virginia Engineer

Print-Publishing Services
Web Site Design-Coding-Hosting
Business Consulting

Phone: (804) 779-3527
sales@iirassoc.com
iirassoc.com

NEWS
Electrical Signaling Between Tomato Plants Studied
July 29, 2020

The soil beneath our feet is alive with electrical signals being sent from one plant to another, according to research in which a University of Alabama in Huntsville (UAH) distinguished professor emeritus in the Department of Electrical and Computer Engineering participated.

UAH’s Dr. Yuri Shtessel and Dr. Alexander Volkov, a professor of biochemistry at Oakwood University, coauthored a paper that used physical experiments and mathematical modeling to study transmission of electrical signals between tomato plants.

Dr. Shtessel’s specialty is control engineering. Control algorithms are widely applicable across disciplines, for instance in aerospace vehicle control.

At Oakwood, Dr. Volkov has been studying electrical signal propagation within a plant and also between plants through a network of Mycorrhizal fungi that’s ubiquitous in soil and appears to act as circuitry. The pair first collaborated on the research in 2017.

“Dr. Volkov is a prominent scholar in biochemistry. Once, we were talking about the electrical signal propagation though the plant’s stem and between the plants – plant communication – through the soil,” Dr. Shtessel says. “I suggested building an equivalent electrical circuit and a corresponding mathematical model that describes these processes.”

The mathematical modeling is based on ordinary and partial differential equations. Dr. Shtessel was in charge of building the models, running the simulations and generating the plots.

Plants generate electric signals that propagate through their parts. When the roots of tomatoes are experimentally isolated from each other with an air gap, the electrical impedance of the gap is very large.

“The electrical signals won’t go through this gap,” Dr. Shtessel says. In that experiment, communication between plants via their roots was prevented, as was discovered by Dr. Volkov.

However, when the plants are living in common soil, experiments conducted by Dr. Volkov found that the ground impedance is not very large and they can communicate by passing electrical signals to each other through the Mycorrhizal network in the soil.

According to information, the tomato research, which focused on experimental study and mathematical modeling of electrical signal propagation between plants of the same species, opens new doors to questions about whether plants communicate across species through fungi.


  ------   News Item Archive  -----  
 
 
The Virginia Engineer on facebook
The Virginia Engineer RSS Feed