SITE SEARCH:
video overview
ADS

IIr Associates, Inc.
Publisher of The Virginia Engineer

Print-Publishing Services
Web Site Design-Coding-Hosting
Business Consulting

Phone: (804) 779-3527
sales@iirassoc.com
iirassoc.com

NEWS
Engineers Destroy Cancer Cells
August 1, 2007

A team of biomedical engineers at Virginia Tech and the University of California at Berkeley has developed a new minimally invasive method of treating cancer, and they anticipate clinical trials on individuals with prostate cancer will begin soon.

The process, called irreversible electroporation (IRE), was invented by two engineers, Rafael V. Davalos, a faculty member of the Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences and Boris Rubinsky, a bioengineering professor at the University of California, Berkeley.

Electroporation is a phenomenon known for decades that increases the permeability of a cell from none to a reversible opening to an irreversible opening. With the latter, the cell will die. What Davalos and Rubinsky did was apply this irreversible concept to the targeting of cancer cells.

IRE removes tumors by irreversibly opening tumor cells through a series of short intense electric pulses from small electrodes placed in or around the body,” Mr. Davalos said. “This application creates permanent openings in the pores in the cells of the undesirable tissue. The openings eventually lead to the death of the cells without the use of potentially harmful chemotherapeutic drugs.”

The researchers successfully ablated tissue using the IRE pulses in the livers of male Sprague-Dawley rats.

“We did not use any drugs, the cells were destroyed, and the vessel architecture was preserved,” Mr. Davalos said.

These in vivo experiments were reported in the June 2006 IEEE Transactions on Biomedical Engineering.

Oncologists already use a variety of methods to destroy tumors using heat or freezing processes, but these current techniques can damage healthy tissue or leave malignant cells. The difference with IRE is Davalos and Rubinsky were able to adjust the electrical current and reliably kill the targeted cells. “The reliable killing of a targeted area with cellular scale resolution without affecting surrounding tissue or nearby blood vessels is key,” Mr. Davalos says.

IRE shows remarkable promise as a “minimally invasive, inexpensive surgical technique to treat cancer. It has the advantages that it is easy to apply, is not affected by local blood flow, and can be monitored and controlled using electrical impedance tomography,” Mr. Davalos explained. He and other researchers will continue to advance this promising method to treat cancer.


  ------   News Item Archive  -----  
 
 
The Virginia Engineer MobileOur Mobile site
m.vaeng.com
The Virginia Engineer on facebook
The Virginia Engineer RSS Feed