SITE SEARCH:
video overview
ADS

IIr Associates, Inc.
Publisher of The Virginia Engineer

Print-Publishing Services
Web Site Design-Coding-Hosting
Business Consulting

Phone: (804) 779-3527
sales@iirassoc.com
iirassoc.com

NEWS
Machine Learning Techniques Used For Studying Climate Prediction
June 25, 2018

A major challenge in current climate prediction models is how to accurately represent clouds and their atmospheric heating and moistening. This challenge is behind the wide spread in climate prediction. Yet accurate predictions of global warming in response to increased greenhouse gas concentrations are essential for policy-makers (e.g. the Paris climate agreement).

In a paper, “Could Machine Learning Break the Convection Parameterization Deadlock?,” recently published online in American Geophysical Union, researchers led by Pierre Gentine, associate professor of earth and environmental engineering at Columbia Engineering, demonstrate that machine learning techniques can be used to tackle this issue and better represent clouds in coarse resolution (~100km) climate models, with the potential to narrow the range of prediction.

“This could be a real game-changer for climate prediction,” says Prof. Gentine, lead author of the paper, and a member of the Earth Institute and the Data Science Institute. “We have large uncertainties in our prediction of the response of the Earth’s climate to rising greenhouse gas concentrations. The primary reason is the representation of clouds and how they respond to a change in those gases. Our study shows that machine-learning techniques help us better represent clouds and thus better predict global and regional climate’s response to rising greenhouse gas concentrations.”

According to information, the researchers used an idealized setup (an aquaplanet, or a planet with continents) as a proof of concept for their novel approach to convective parameterization based on machine learning. They trained a deep neural network to learn from a simulation that explicitly represents clouds. The machine-learning representation of clouds, which they named the Cloud Brain (CBRAIN), could skillfully predict many of the cloud heating, moistening, and radiative features that are essential to climate simulation.

Funding for the research was provided by the DOE SciDac and Early Career Programs, the NSF, and the German Research Foundation (DFG) Transregional Collaborative Research Center SFB/TRR 165 “Waves to Weather”. Computational resources for the SPCAM3 simulations were provided through the NSF Extreme Science and Engineering Discovery Environment (XSEDE).


  ------   News Item Archive  -----  
 
 
The Virginia Engineer on facebook
The Virginia Engineer RSS Feed