video overview

IIr Associates, Inc.
Publisher of The Virginia Engineer

Print-Publishing Services
Web Site Design-Coding-Hosting
Business Consulting

Phone: (804) 779-3527

Researchers Collaborated To Employ Novel Nanoscale Fibrous System
July 14, 2017

Researchers from Virginia Tech and the University of Pittsburgh have collaborated to employ a novel nanoscale fibrous system that can measure the tiny forces exerted by and upon individual cells with extreme precision. The team hopes that this platform, which investigators call nanonet force microscopy (NFM), will provide new knowledge about smooth muscle cell biology that could have implications for treating cardiovascular disease, which is still a leading cause of death in the United States.

Nanonet Force Microscropy (NFM) can measure the contractile inside-out forces of a single cell attached to multiple fibers. Shown here are f-actin (red), paxillin (green), and the nucleus (blue). Scale bar = 20 micron. Credit: Abinash Padhi, STEP Lab, Virginia Tech.

The results of investigations on cells using this platform appear in the “Forces” issue of the journal Molecular Biology of the Cell, in the article “Nanonet Force Microscopy for Measuring Forces in Single Smooth Muscle Cells of Human Aorta,” published July 7, 2017.

The main goal of this current study, said Julie Phillippi, assistant professor at the University of Pittsburgh Department of Cardiothoracic Surgery whose laboratory provided healthy human patient smooth muscle cells for the study, was to quantify forces that healthy cells experience in various conditions of stress. The fibrous nanonet itself was designed in the mechanical engineering laboratory of Amrinder Nain, associate professor at Virginia Tech and member of the American Society for Cell Biology. Forces measured using NFM, Nain said, include forces exerted by the cells themselves and forces exerted by the environment on the cells. “Everything in nature exerts and experiences a physical force,” said Nain. “This platform measures both simultaneously.”

Phillippi said that previous work tested the mechanical strength of whole aortic tissue and understanding the single cell biomechanics is vitally important. Single-cell studies provide insight into the proteins involved in the fleeting so-called focal adhesions that most cells make as they move around their microenvironment. The NFM assembly aims to mimic, in as physiologically relevant a way as possible, what cells endure within the collagen fibers of the extracellular matrix (ECM)—the matrix that supports cell growth in living things. Tweaking the artificial matrix by changing fiber diameter, density, and spacing in a controlled and repeatable manner, as well as using cells from diseased patients at different disease severities, will allow Phillippi and Nain to simulate the conditions experienced by cells in many realistic situations.

  ------   News Item Archive  -----  
The Virginia Engineer on facebook
The Virginia Engineer RSS Feed