video overview

IIr Associates, Inc.
Publisher of The Virginia Engineer

Print-Publishing Services
Web Site Design-Coding-Hosting
Business Consulting

Phone: (804) 779-3527

Surgical Training Enhanced With 3D Printing
July 19, 2019

When someone breaks or fractures a bone, orthopedic surgeons can set and stabilize it by drilling and placing medical screws into the damaged area. This technique of fracture fixation enables fast healing and a quick recovery of functionality of the injured bone.

With extensive expertise needed, surgeons-in-training undergo residencies to hone their skills and bridge the gap between education and application under the mentorship of practicing doctors in a real-world setting.

Currently, this training consists of using either cadavers and simulant materials, such as wood or plastic, or virtual reality-based simulators to practice drilling and placing screws into a bone. However, as Dr. Bruce Tai explained, these methods do not imitate an actual, living patient very well nor do they provide realistic responses, and virtual reality systems are generally very expensive.

“Additionally, in both cases, the assessment and feedback given to trainees is totally subjective,” said Dr. Tai, assistant professor and Mechanical Engineering Industry Advisory Council Faculty Fellow in the J. Mike Walker ’66 Department of Mechanical Engineering at Texas A&M University. “I used to work with neurosurgeons to develop 3D-printed simulators and always felt that the assessment part was difficult (regardless of how good of a simulator they had), due to the lack of objective data.”

Merging engineering and medicine, a team of researchers were awarded the Simulation Research Grant from the Orthopaedic Research and Education Foundation (funded by the American Board of Orthopaedic Surgery). They are working to enhance the training of orthopedic residents through a 3D printed simulator and visualized performance data.

According to information, the team’s project aims to improve these training modules for future surgeons by combining the advantages of hands-on physical and objective, data-driven virtual simulations.

Physically, trainees will get firsthand experience drilling into and operating on 3D printed anatomical replicas made of a bone-mimicking composite previously developed by Dr. Tai that consists of a special printable plaster and binder jetting technology. This method enables different grades of hardness and toughness to be produced in a way that resembles human bones at different ages and conditions. Along with being inexpensive, 3D printing also allows students to print and interact with simulated rare diseases – giving them a hands-on experience with disorders that may not be present in available cadavers.

Virtually, data captured by embedded sensors will be used to analyze and assess the student’s performance as they conduct the simulated surgery. These sensors will record two key performance measures regarding drilling and screw placement: force and motion. As such, it will provide students and instructors alike an objective, real-time set of data from the simulator. That information can then be cross-referenced by a large dataset complied from experienced surgeons in order to objectively determine how well the operation was done.

  ------   News Item Archive  -----  
The Virginia Engineer on facebook
The Virginia Engineer RSS Feed