SITE SEARCH:
video overview
ADS


Publisher of The Virginia Engineer

Print-Publishing Services
Web Site Design-Coding-Hosting
Business Consulting

Phone:


NEWS
Health Monitor That Uses Stretchable Electronics Developed
November 21, 2019

A wireless, wearable monitor built with stretchable electronics could allow comfortable, long-term health monitoring of adults, babies and small children without concern for skin injury or allergic reactions caused by conventional adhesive sensors with conductive gels.


A wireless, wearable monitor built with stretchable electronics could allow comfortable, long-term health monitoring of adults, babies and small children without concern for skin injury or allergic reactions caused by conventional adhesive sensors with conductive gels. Credit: John Toon, Georgia Tech.

According to information, the soft and conformable monitor can broadcast electrocardiogram (ECG), heart rate, respiratory rate and motion activity data as much as 15 meters to a portable recording device such as a smartphone or tablet computer. The electronics are mounted on a stretchable substrate and connected to gold, skin-like electrodes through printed connectors that can stretch with the medical film in which they are embedded.

“This health monitor has a key advantage for young children who are always moving, since the soft conformal device can accommodate that activity with a gentle integration onto the skin,” said Woon-Hong Yeo, an assistant professor in the George W. Woodruff School of Mechanical Engineering and Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology. “This is designed to meet the electronic health monitoring needs of people whose sensitive skin may be harmed by conventional monitors.”

Details of the monitor, “All-in-One, Wireless, Stretchable Hybrid Electronics for Smart, Connected, and Ambulatory Physiological Monitoring” were reported in the journal Advanced Science. The research was supported by the Imlay Innovation Fund at Children’s Healthcare of Atlanta, NextFlex (Flexible Hybrid Electronics Manufacturing Institute), and by a seed grant from the Institute for Electronics and Nanotechnology at Georgia Tech. The monitor has been studied on both animal models and humans.

Because the device conforms to the skin, it avoids signal issues that can be created by the motion of the typical metal-gel electrodes across the skin. The device can even obtain accurate signals from a person who is walking, running or climbing stairs.

The monitor uses three gold electrodes embedded in the film that also contains the electronic processing equipment. The entire health monitor is just three inches in diameter, and a more advanced version under development will be half that size. The wireless monitor is now powered by a small rechargeable battery, but future versions may replace the battery with an external radio-frequency charging system.

Two versions of the monitor have been developed. One is based on medical tape and designed for short-term use in a hospital or other care facility, while the other uses a soft elastomer medical film approved for use in wound care. The latter can remain on the skin longer.

As next steps, Prof. Yeo plans to reduce the size of the device and add features to measure other health-related parameters such as temperature, blood oxygen and blood pressure. A major milestone would be a clinical trial to evaluate performance against conventional health monitors.


  ------   News Item Archive  -----  
 
 
The Virginia Engineer on facebook
The Virginia Engineer RSS Feed