SITE SEARCH:
video overview
ADS

IIr Associates, Inc.
Publisher of The Virginia Engineer

Print-Publishing Services
Web Site Design-Coding-Hosting
Business Consulting

Phone: (804) 779-3527
sales@iirassoc.com
iirassoc.com

NEWS
Hopes of Complex Life Rise With Exoplanet Axis Study
December 17, 2019

Astrophysicists at the Georgia Institute of Technology modeled a theoretical twin of Earth into other star systems called binary systems because they have two stars. They concluded that 87% of exo-Earths one might find in binary systems should have axis tilts similarly steady to Earth’s, an important ingredient for climate stability that favors the evolution of complex life.


Astrophysicist Billy Quarles, author of a new study on exoplanet axis tilt, stands with Georgia Tech's largest telescope housed at its observatory. Credit: Georgia Tech / Rob Felt.

“Multiple-star systems are common, and about 50% of stars have binary companion stars. So, this study can be applied to a large number of solar systems,” said Gongjie Li, the study’s co-investigator an assistant professor at Georgia Tech’s School of Physics.

Single-star solar systems like our own with multiple planets appear to be rarer.

According to information, the researchers started out contrasting how the Earth’s axis tilt, also called obliquity, varies over time with the variation of Mars’ axis tilt. Whereas our planet’s mild obliquity variations have been great for a livable climate and for evolution, the wild variations of Mars’ axis tilt may have helped wreck its atmosphere.

Then the researchers modeled Earth into habitable, or Goldilocks, zones in Alpha Centauri AB – our solar system’s nearest neighbor, a binary system with one star called “A” and the other “B.” After that, they expanded the model to a more universal scope.

“We simulated what it would be like around other binaries with multiple variations of the stars’ masses, orbital qualities, and so on,” said Billy Quarles, the study’s principal investigator and a research scientist in Prof. Li’s lab. “The overall message was positive but not for our nearest neighbor.”

Alpha Centauri A actually didn’t look bad, but the outlook for mild axis dynamics on an exo-Earth modeled around star B was wretched. This may douse some hopes because Alpha Centauri AB is four lightyears away, and a mission named Starshot with big-name backers plans to launch a space probe to look for signs of advanced life there.

The researchers published their study, which was co-led by Jack Lissauer from NASA Ames Research Center, in Astrophysical Journal recently, under the title: “Obliquity Evolution of Circumstellar Planets in Sun-like Stellar Binaries.” The research was funded by the NASA Exobiology Program.


  ------   News Item Archive  -----  
 
 
The Virginia Engineer on facebook
The Virginia Engineer RSS Feed